Disentangling the mechanisms behind climate effects on zooplankton.

نویسندگان

  • Kristina Ø Kvile
  • Øystein Langangen
  • Irina Prokopchuk
  • Nils C Stenseth
  • Leif C Stige
چکیده

Understanding how climate influences ecosystems is complicated by the many correlated and interrelated impacting factors. Here we quantify climate effects on Calanus finmarchicus in the northeastern Norwegian Sea and southwestern Barents Sea. By combining oceanographic drift models and statistical analyses of field data from 1959 to 1993 and investigating effects across trophic levels, we are able to elucidate pathways by which climate influences zooplankton. The results show that both chlorophyll biomass in spring and C. finmarchicus biomass in summer relate positively to a combination of shallow mixed layer depth and increased wind in spring, suggesting that C. finmarchicus biomass in summer is influenced by bottom-up effects of food availability. Furthermore, spatially resolved C. finmarchicus biomass in summer is linked to favorable transport from warmer, core areas to the south. However, increased mean temperature in spring does not lead to increased C. finmarchicus biomass in summer. Rather, spring biomass is generally higher, but population growth from spring to summer is lower, after a warm compared with a cold spring. Our study illustrates how improved understanding of climate effects can be obtained when different datasets and different methods are combined in a unified approach.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Direct and indirect climate forcing in a multi-species marine system.

Interactions within and between species complicate quantification of climate effects, by causing indirect, often delayed, effects of climate fluctuations and compensation of mortality. Here we identify direct and indirect climate effects by analysing unique Russian time-series data from the Norwegian Sea-Barents Sea ecosystem on the first life stages of cod, capelin, herring and haddock, their ...

متن کامل

Climate shifts the interaction web of a marine plankton community

Climatic effects in the ocean at the community level are poorly described, yet accurate predictions about ecosystem responses to changing environmental conditions rely on understanding biotic responses in a food-web context to support knowledge about direct biotic responses to the physical environment. Here we conduct time-series analyses with multivariate autoregressive (MAR) models of marine ...

متن کامل

Effects of Climate, Limnological Features and Watershed Clearcut Logging on Long-Term Variation in Zooplankton Communities of Boreal Shield Lakes

In Canada, climate change and forest harvesting may both threaten the ecological integrity of boreal lakes. To disentangle the effects of natural variation in climate and lake environments from those of logging, we evaluated long-term variation (1991–2003) in zooplankton communities of six boreal lakes in Ontario. We monitored concomitantly changes in zooplankton abundance and composition in th...

متن کامل

Is Recovery of Large-Bodied Zooplankton after Nutrient Loading Reduction Hampered by Climate Warming? A Long-Term Study of Shallow Hypertrophic Lake Søbygaard, Denmark

Nutrient fluctuations and climate warming can synergistically affect trophic dynamics in lakes, resulting in enhanced symptoms of eutrophication, thereby potentially counteracting restoration measures. We performed a long-term study (23 years) of zooplankton in Danish Lake Søbygaard, which is in recovery after nutrient loading reduction, but now faces the effects of climate warming. We hypothes...

متن کامل

Linking oceanic food webs to coastal production and growth rates of Pacific salmon (Oncorhynchus spp.), using models on three scales

Three independent modeling methods—a nutrient-phytoplankton–zooplankton (NPZ) model (NEMURO), a food web model (Ecopath/Ecosim), and a bioenergetics model for pink salmon (Oncorhynchus gorbuscha)—were linked to examine the relationship between seasonal zooplankton dynamics and annual food web productive potential for Pacific salmon feeding and growing in the Alaskan subarctic gyre ecosystem. Th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 113 7  شماره 

صفحات  -

تاریخ انتشار 2016